Poisson Process: A sequence of discrete occurrences where the average number of occurrences in a fixed time interval is known, but the exact timing of occurrences is random.

EXAMPLES: arrival of emails phone calls
emission of radioactive particles cars passing a point on a road

PoIsson DISTRIBUTION: $X \sim \operatorname{Poisson}(\mu)$ if X counts the occurrences in a Poisson process with mean μ occurrences per time interval.
$p \frac{\mu+}{} P(X=x)=p(x ; \mu)=e^{-\mu} \frac{\mu^{x}}{x!} \quad$ for $\quad x=0,1,2,3, \ldots$
check: Does it add up to 1 ?

$$
\begin{aligned}
& \sum_{x=0}^{\infty} e^{-\mu} \frac{\mu^{x}}{x!}=e^{-\mu} \sum_{x=0}^{\infty} \frac{\mu^{x}}{x!}=e^{-\mu} \cdot e^{\mu}=1 \\
& \text { Taylor } \\
& \text { Series } \underbrace{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
\end{aligned}
$$

Binomial (n, p) is approximately Poisson $(n p)$:
If n is large and p is small, then

$$
\underbrace{b(x ; n, p)}_{\text {binomial pat }} \approx \underbrace{p(x ; \mu)}_{\text {poisson put }} \text { with } \mu=n p \text {. }
$$

Approximation is "good" if $n \geq 100$ and $n p \leq 10$.

