HYPERGEOMETRIC DISTRIBUTION

A set contains N items, M of which are "successes" and the rest are "failures." A sample of n items is selected without replacement (each subset of size n is equally likely to be chosen). Let X be the number of successes in the sample. Then $X \sim \operatorname{Hypergeometric}(n, M, N)$.
pmf: $P(X=x)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$

QUESTION: What values of x have nonzero probability?

- Certainly $0 \leq x$

- Bound on num. of failures in the sample:

$$
\begin{aligned}
n-x & \leq N-M \\
n-N+M & \leq x
\end{aligned} \longrightarrow \max (0, n-N+M) \leq x
$$

Book says: $\operatorname{Max}(0, n-N+M) \leq x \leq \min (n, M)$

