Moment - Generating functions (mgr) mg of ry X is $M_{X}(t)=E\left(e^{t X}\right)=\sum_{X} e^{t_{x}} P(X=x)$
also: $M_{x}(t)=1+E(x) t+E\left(x^{2}\right) \frac{t^{2}}{2}+E\left(x^{3}\right) \frac{t^{3}}{6}+\cdots$
\uparrow moments of x 个
To find $E\left(X^{r}\right)$, differentiate $M_{x}(t) r$ times and set $t=0$.

EXAMPLE: Let $X \sim \operatorname{Bisson}(\mu)$. Find the mg of X.
Then: $\quad M_{x}(t)=E\left(e^{t x}\right)=\sum_{k=0}^{\infty} e^{t k} \underbrace{e^{-\mu} \frac{\mu^{k}}{k!}}_{P(x=k)}$

$$
\begin{aligned}
& =e^{-\mu} \sum_{k=0}^{\infty} e^{t k} \frac{\mu^{k}}{k!}=e^{-\mu} \sum_{k=0}^{\infty} \frac{\left(\mu^{t}\right)^{k}}{k!} \underbrace{}_{k+} e_{x=\mu e^{t}}^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \\
M_{x}(t) & =e^{-\mu} e^{\mu e^{t}}
\end{aligned}
$$

Observe: $\quad M_{x}(0)=e^{-\lambda} e^{\mu}=1$

$$
\begin{aligned}
M_{x}^{\prime}(t) & =e^{-\mu} \cdot e^{\mu e^{t}} \cdot \mu e^{t}, \text { so } M_{x}^{\prime}(0)=e^{-\mu} \cdot e^{\mu} \cdot \mu=\mu=E(X) \\
M_{x}^{\prime}(t) & =\mu e^{t} e^{\mu\left(e^{t}-1\right)} \\
M_{x}^{\prime \prime}(t) & =\mu e^{t} e^{\mu\left(e^{t}-1\right)}+\mu e^{t} e^{\mu\left(e^{t-1}-1\right)} \mu e^{t} \\
\text { so } M_{x}^{\prime \prime}(0) & =\mu e^{0} e^{\mu\left(e^{0}-1\right)^{0}}+\mu e^{0} e^{\mu\left(e^{\prime} \theta-1\right)^{0}} \mu e^{0} \\
& =\mu+\mu^{2}=E\left(X^{2}\right)
\end{aligned}
$$

geometric series:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+\cdots+a r^{n}+\cdots=\frac{a}{1-r} \\
& r=\text { common ratio } \\
& \sum_{n=0}^{m-1} a r^{n}=a+a r+a r^{2}+\cdots+a r^{m-1}=\frac{a\left(1-r^{m}\right)}{1-r}
\end{aligned}
$$

