Bivariate Transformation Theorem
Let X_{1} and X_{2} have joint density $f\left(x_{1}, x_{2}\right)$.
Let $Y_{1}=u_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$,
with inverse transformation $X_{1}=v_{1}\left(Y_{1}, Y_{2}\right)$ and $X_{2}=v_{2}\left(Y_{1}, Y_{2}\right)$.
Let M be the Jacobian matrix:

$$
M=\left[\begin{array}{ll}
\frac{\partial v_{1}}{\partial y_{1}} & \frac{\partial v_{1}}{\partial y_{2}} \\
\frac{\partial v_{2}}{\partial y_{1}} & \frac{\partial v_{2}}{\partial \gamma_{2}}
\end{array}\right]
$$

$$
\left(X_{1}, X_{2}\right) \xrightarrow[v_{1}, v_{2}]{\stackrel{u_{1}, u_{2}}{\sim}}\left(Y_{1}, Y_{2}\right)
$$

Then the joint density of Y_{1} and Y_{2} is given by

$$
g\left(y_{1}, y_{2}\right)=f\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right) \cdot|\operatorname{det}(M)| .
$$

Note similarity to 1-variable
Transformation

$$
f_{Y}(y)=f_{X}(h(y)) \cdot\left|h^{\prime}(y)\right|
$$

Theorem!

